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PROCEDURE FOR CALCULATING A CONDUCTIVE HEAT EXCHANGER 
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V. V. Kozhushko, and E. G. Zavadovskii 

UDC 621.1.016.4 

In a number of devices a fluid is heated as it flows through a porous wall or a metal 
wall with a high thermal conductivity which has channels containing the flowing fluid. There 
naturally arise problems of finding the temperature distribution in the material of such a 
wall heat exchanger, the temperature change of the flowing fluid, and the amount of heat 
transferred for given geometric parameters of the wall heat exchanger and given values of the 
initial temperature and the flow rate of the fluid. To simplify the problems we make the 
following assumptions: i) the thermal and physical properties and the heat-transfer char- 
acteristics are constants; 2) end effects related to the finite dimensions of the wall heat 

exchanger can be neglected, i.e~, we assume an infinite porous wall; 3) heat transfer through 
the skeleton of the wall is by conduction only in the direction normal to the boundary sur- 
faces, i.e., the temperature gradient in the transverse direction can be neglected. This con- 
dition holds when the temperature difference between the central part of individual elements 
of the skeleton and the channel surface is small in comparison with the temperature dif- 
ference between the channel surface and the moving fluid, i.e., the thermal resistance to 
conduction through the heat-exchanger skeleton and the thermal resistance to heat transfer 
to the moving fluid are controlling. This assumption will be satisfied sufficiently rigorously 
if the Biot number Bi = eh/% determined in the heat-exchanger skeleton is smaller than unity. 
[i]. It is easy to verify that for metal heat exchangers this assumption is satisfied over 
reasonable variations of the heat-transfer coefficient ~, the thermal conductivity %, and a 
characteristic internal dimension h- the distance between centers of the openings; 4) heat 
conduction in the fluid can be neglected; this assumption is obvious for turbulent flow, but 

even for laminar flow, taking account of the fact that the thermal conductivity of a fluid 
is an order of magnitude smaller than that of the heat-exchanger material, heat conduction in 
the fluid can be neglected. 

Thus, in our heat-exchanger model we assume that heat is transferred by conduction through 
the skeleton of the material, and by convection to the fluid. Then the system of equations 
for the temperature distribution (a one-dimensional problem for the material of the device) 
can be formulated in the following way for a l-m 2 cross section of the heat exchanger (Fig. i). 

The amount of heat transferred to the flowing fluid in a part dx during a time dT is [i] 

dQ = Zf d~t~- dxd~, (1) 
dx ~ 

but on the other hand this heat can be determined from the heat-transfer equation 

dQ = ~P (tu --/F') dxdz. (2) 

F i n a l l y ,  t h e  amount of  h e a t  go ing  i n t o  h e a t i n g  o f  t h e  f l u i d  i s  

dQ = p (1 - - f )ucp dtF dxdT. (3) 
dx 

By e q u a t i n g  ( 1 ) ,  ( 2 ) ,  and (3 ) ,  we o b t a i n  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s :  

Z/ditM = a P  (t,, -- t F ), (4) 
dx 2 
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Fig. I. Schematic diagram of 
heat-exchanger wall. 

,o (i -- h ,%, -~% =-,:zP (t~, -- % ). 
dx 

By introducing the dimensionless argument ~ = x/6 and the notation 

we obtain the system 

Bi~ aP62 p ( 1 -- f) uep6 , g ~  , ( 5 )  

>,: >7 

d2t" --Bio(t~--tF~, dtF ~ Bio ( t = - - f F ) ,  (6)  
a~ a~ g 

w h i c h  we s o l v e  f o r  two v a r i a n t s  o f  t h e  b o u n d a r y  c o n d i t i o n s .  

First Variant, The temperatures of the end surfaces of the heat exchanger and the inlet 
temperature of the fluid are specified, i.e., tMl~=o = toM, tM[~=~ = t~M, tF]~=o = to F. 

The temperatures of the end surfaces of the heat exchanger are maintained at the speci- 
fied values by external heat transfer. This can be accomplished by using a shield which trans- 
mits radiant energy to the end surface. The temperature of the surface signals for a change 
in the amount of heat liberated by the shield. 

Thus, a very simple automated system solves the problem of maintaining the" end surfaces 
at specified temperatures. 

By introducing the dimensionless quantities 

to F --- to~ 
we obtain the following problem for analysis: 

d2@~ 
- -  Bio (@,,-- OF), 

dt z 

t F -- Lo,~I -, 0 r  
to F - -  to'~r 

(7) 

d O F  Bi6 (0,  _ OF], (8) 
d~ g 

o,,(0)=.0, o~,(1)= ~ . , - to , , -=oo ,  (9) 
to F -- to~, 

OF(O) = I. (i0) 

with boundary conditions (9). 
(8): 

By eliminating O F from system (8) we obtain the following linear differential equation 
for @M: 

daO~'I~ -[- --Bi6 d2Ox-- - -  Bi6 --d@~ _-- 0 (11)  
d~ a g d~ z d~ 

We obtain another boundary condition from the first of Eqs. 

dZOM I ---- --Bia. (12) 
d~ 2 ~-0 
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Taking account of (9) and (12), the solution of Eq. (ll) has the form [2] 

@M = C1 (exp n~ - -  1) - -  C~ [1 - -  exp ( - -  m~)], (13 )  

where 

B,o , i / (  B,o m ~  2 g  T \ 2g 1 4-Bi~ ; (14 

Bi~ ; (  Bi~ / 2 
n - -  2g q- 1 / '  \ 2g  } -k-Bi~ ; (15 

Bi~ [ 1 - -  exp ( - -  m)] - - O d n  2 
C1 ~ ; (16 

n ~ [ e x p ( - -  m ) - -  II + mZ(1 - -  expn) 

C2 = Bi~ (exp tz -- 1) + Oon 2 (i 7 
n 2 [exp ( - -  m) --  1] + m 2 (1 - -  exp n) 

Using the first of Eqs. (8), it is easy to find the temperature of the flowing fluid 

@ F = 1 + 1__ [nCl (exp n~ - -  1) + me. (1 - -  exp ( - -  m~J] (18 )  
g 

and the dimensionless form of the amount of heat transferred 

0= 08 - -  C~n(expn-- 1)+C~mll--exp(--m)l (19)  
zf (to F -- to,,) 

or, as is easy to see, 

= g l O F ( 1 ) - -  II. (2o)  

Analysis of Eqs. (5) shows that for the most characteristic geometric and operating 
parameters of heat exchangers the Biot number Bi 6 may vary over rather wide limits from 0 to 
i0,000, whereas the value of Bi6/g is limited to the range 0.1-0.6. Therefore it is of 
interest to investigate the solution obtained for the limiting values of Bi 6. 

Suppose Bi6 + 0 (in practice Bi 6 < 0.5). In this case the change in metal temperature is 
given by @M = @o6, and the fluid temperature is practically unchanged: 8 F = i, i.e., in this 
case it can be sai d that the heat exchanger is not working. This results from the fact that 

as Bi 6 § 0 the heat-transfer surface (the inner surface of the channels P6) is also decreased, 
while the relative metal surface f is increased. Heat transfer between the coolant and metal 

turns out to be negligible in comparison with heat transfer by conduction. The metal tempera- 

ture varies linearly, as it would if there were no flowing fluid. 

Suppose Bi 8 § oo (in practice Bi 6 > i00), In this case the diameter of the channels is 

relatively large, which means that the heat-transfer surface is also large and the metal 
volume is small. Since Bi6/g varies only from 0.i to 0.6, the coolant flow rate will be 

large. The metal takes on the temperature of the fluid practically instantaneously, and heat 
transfer occurs only at the boundaries where 6 = 0 and 6 = i. The inner part of the heat 

exchanger in fact is inoperative. 

Figure 2a shows the most characteristic temperature distributions in metal and fluid for 
Bi 6 = i0 and Bi6/g equal to 0.I, 0,2, 0.3, 0.4, and 0,5, with the temperatures of the heat- 

exchangers walls maintained at tom = tiM, i.e., 80 = O. It is clear from the figure that 
even for a very small increase in Bi6/g , i.e., a decrease in the coolant flow rate, the dif- 

ference between the initial and final coolant temperatures increases appreciably, and calcula- 
tions show that heat transfer increases somewhat. In turn the metal temperature hardly 
changes for a change in Bi6/g. 

Second Variant. The temperature of the material on one of the heat-exchanger surfaces 

is specified tM]~1 = tiM, and the second surface is thermally insulated, i.e., 

dt~ I = O, 

By introducing the dimensionless temperatures 
_ . 

TM= �9 t ~ ' t ~  , T F _-- / F - - / ~  , (21) 
[I~ -- toF tim -- lOF 
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Fig. 2. a) Temperatures of metal @H (open curves) and fluid @F 
(solid curves) for Bi~ = I0; b) temperatures of metal T M (open 
curves) and fluid T F (solid curves) for Big = i. 

we obtain the problem 

whose solution is 

d2T~r --Bi6(Tre--T F), dTF -- Bi6 ( T > , - - T  F), 
d$ 2 d$ g 

dT~ 
/ = 0, T~[~=I = 1, 
/ 

T F [~=o = 0, 

(22)  

(23)  

(24) 

TM = tzexp(- -ms  4 mexpO~) , 
n exp.(-- m) + m exp n (25)  

TF = Bi___i_~ exp tT~ - -  exp ( - -  ms . (26)  
g ~ exp ( - -  m) + m exp n 

In dimensionless form the amount of heat transferred to the coolant is 

= Q~ exp n --- exp ( - -  m) 
- - B i ~  = gT F (1). ( 2 7 )  

%f (tl~ - -  t0F ) n exp (-- m) + m exp n 
A n a l y s i s  o f  t h e  f o r m u l a s  o b t a i n e d  shows t h a t  t h e  f l u i d  t e m p e r a t u r e  a t  t h e  h e a t - e x c h a n g e r  

outlet increases with decreasing Big. If Big § ~ (in practice Big > i0), the heat exchanger 
does not operate, since the fluid temperature does not change, and the metal takes on the 
temperature of the fluid instantaneously. The most characteristic temperature distributions 

for this variant are shown in Fig. 2b. Here Big = i, and Big/g is varied from 0.i to 0.5. 
As for the first variant, we see that while the coolant temperature varies with a change in 

Big/g, the change in the metal temperature is quite negligible. 

The analysis presented shows that for Big < 1 heat exchangers of the second type, i.e., 
those with one insulated surface, are more efficient than those of the first type, while for 
i00 > Big > 1 heat exchangers of the first type are considerably more efficient than those 
of the second type, since for the values of Big indicated, heat exchangers of the second type 
are practically inoperative. This important fact should be taken into account in the design 
and calculation of heat exchangers. 

NOTATION 

p, fluid density; Cp, specific heat; u, fluid velocity; I, thermal conductivity of metal; 
x, dimensional coordinate; 6, wall thickness; ~ = x/g, dimensionless coordinate; f, cross- 
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sectional area of metal skeleton per m2; h, distance between centers of openings; P, wetted 
�9 2 2 �9 

perlmeter of channels per m of cross section; Bi 6 = ~P6 /If, Blot number; g = p(l -- f)uc~6/ 

If, dimensionless fluid flow rate; tM, dimensional metal temperature; tF, dimensional fluld 
temperature; toM, tiM, toF, initial temperature of metal and surfaces and inlet temperature 
of fluid. 

1, 

2. 
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REGENERATIVE HEAT EXCHANGERS WITH PERIODIC TIME VARIATION OF 

COOLANT TEMPERATURE 

V. M. Liventsov UDC 536.27 

Analytic expressions are derived for the temperatures of a heat-exchanger solid 
and coolant. 

Operating elements of power plants and chemical reactors are frequently subjected to the 
action of a coolant whose temperature varies periodically with time. The change in tempera- 
ture of the solid parts of these elements determines the service characteristics of the plant 

or reactor, e.g., the change in the rate of catalytic reactions, etc. From the point of view 
of heat transfer such installations are regenerative heat exchangers. 

Let us consider a heat exchanger whose heat-retaining elements have such characteristics 
that the temperature gradient in elements of the solid can be assumed negligibly small. In 
addition, we assume that the gas or liquid (from now on for brevity we refer only to a gas) 
moves through the free space of the heat exchanger of length L in such a way that the tempera- 
ture of the gas or solid is the same at all points of a cross section of the heat exchanger 

perpendicular to the direction of gas flow. 

Then, following [i], the problem is reduced to that of solving the following system of 

equations: 

OT1 = a (T2- -  T1), 
ot (1) 

OT2 _]_ 00T~.  _ b (T1 - -  T2), (2) 
Ox at 

where a = ~Al/o,Ml; b = ~Al/c=~; e = p2Vll~; 0 ~ t > ~. 

The boundary and initial conditions follow from the formulation of the problem: 

TI(x,  t)it=o=O, T2(x, t)lt=o = 0, (3)  

T2 (x, t)l~=o = D sin ~t. (4)  

In most treatments of regenerative heat exchangers the second term on the left-hand side 
of Eq. (2) is assumed negligibly small in comparison with tile first. To obtain a more general 
solution we retain this term in the initial system of equations. 

After taking Laplace transforms of Eqs. (1)-(4) we have 

pT~ = a ( ~  = ~ ) ,  ( 5 )  
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